AIRS Research Areas

Air-Sea Exchange

  • Gas and Heat
  • Biogeochemical Cycling
  • Rainfall

Coastal Region

  • Rivers
  • Tidal Flats
  • Nearshore

Ocean/Atmosphere

  • Climate Change
  • Ocean Circulation
  • Atmospheric Rolls
  • Hurricanes

Sensors

  • Microwave
  • Infrared
  • Laser
  • Hydrophone
  • Dissolved Gas

Waves

  • Wave Breaking
  • Internal Waves

Educational Opportunities

Graduate and undergraduate students who wish to study the intersection of atmospheric sciences, oceanography, and engineering at the Applied Physics Laboratory may work with AIRS advisors who have joint apointments in UW academic departments.  More >>

Graduate student Michael Schwendeman worked with advisor Jim Thomson to track and measure breaking waves in the North Pacific during an expedition to Ocean Station Papa. Mike's blog chronicled the research cruise.

What We Do

The Air-Sea Interaction and Remote Sensing (AIRS) Department is a diverse group of scientists, engineers, technical support staff, and students that conducts research focused on the air-sea interface by using a wide variety of remote sensing techniques.

Our interests range from the global scale of climate change and ocean circulation to the smallest scales of the physics of air-sea heat and gas exchange.

Our remote sensing tools also span a wide range of scales—from satellite remote sensing, to field experiments using surface and airborne platforms, and to laboratory experiments in wave tanks. Remote sensing instruments used include electro-optical sensors (microwave, infrared, and laser) and acoustic sensors (sonars and hydrophones).

Department Chair
Air-Sea Interaction and
Remote Sensing


SWIFT Tests in Arctic Waters

Graduate student researcher Seth Zippel tests SWIFT (Surface Wave Instrument Float with Tracking) performance in the Arctic in advance of planned missions to be conducted in summer 2014 during the Marginal Ice Zone experiments.  More >>

DARLA

Depth, or bathymetry, is a key variable to understand how to navigate safely in a shallow water environment and it is also key to predicting the currents and waves. DARLA will help determine the extent to which data assimilation models, that are initialized and constrained with remote sensing and in situ measurements, can infer bathymetry.  More >>

Marginal Ice Zone Program

An integrated program of observations and numerical simulations will focus on understanding ice–ocean–atmosphere dynamics in and around the MIZ, with particular emphasis on quantifying changes associated with decreasing ice cover. The MIZ measurement program will employ a novel mix of autonomous technologies (ice-based instrumentation, floats, drifters, and gliders) to characterize the processes that govern Beaufort Sea MIZ evolution from initial breakup and MIZ formation though the course of the summertime sea ice retreat.  More >>

Sea State and Boundary Layer Physics of the Emerging Arctic Ocean

This ONR Departmental Research Initiative is in response to the observed decline in Arctic sea ice extent. The U.S. Navy has a renewed interest in understanding and predicting the environment in this region, including a desire to forecast the presence or absence of sea ice at a variety of lead times.  More >>

Turbulence Generated by Tides in the Canal de Chacao, Chile

At a proposed tidal energy conversion site in southern Chile, APL-UW researchers measured the magnitude and scales of turbulence — to aid the design of turbines for the site and to understand the fundamental dynamics of flows through the channel.  More >>

In the News

Sixteen-foot swells reported in once-frozen region of Arctic Ocean

The Washington Post,

30 Jul 2014

The fact that researchers have now measured swells of more than 16 feet in the Arctic's Beaufort Sea, just north of Alaska, is a bit of a stunner. Swells of that size, researchers say, have the potential to break up Arctic ice even faster than the melt underway there for decades thanks to rapid global warming.

Giant waves found in Arctic Ocean could be accelerating sea ice loss

The Washington Post — Capital Weather Gang,

30 Jul 2014

Huge areas of ice-free water are leading to massive waves in the Arctic Ocean, according to a study published in Geophysical Research Letters.

Huges waves measured for first time in Arctic Ocean

UW News and Information,

29 Jul 2014

Arctic ice used to retreat less than 100 miles from the shore. In 2012, it retreated more than 1,000 miles. Wind blowing across an expanse of water for a long time creates whitecaps, then small waves, which then slowly consolidate into big swells that carry huge amounts of energy in a single punch.

Recent Papers

Rusch, C., J. Thomson, S. Zippel, and M. Schwendeman, "Video recognition of breaking waves," Proc., OCEANS'14, 14-19 September, St. John's, Newfoundland (MTS/IEEE, 2014).

15 Jul 2014

Durgesh, V., J. Thomson, M. Richmond, and B. Polagye, "Noise correction of turbulent spectra obtained from acoustic Doppler velocimeters," Flow Meas. Instrum., 37, 29-41, doi:10.1016/j.flowmeasinst.2014.03.001, 2014.

1 Jun 2014, Link

Thomson, J., and W.E. Rogers, "Swell and sea in the emerging Arctic Ocean," Geophys. Res. Lett., 41, 3136-3140, doi:10.1002/2014GL059983, 2014.

16 May 2014, Link

Close