AIRS Research Areas

Air-Sea Exchange

  • Gas and Heat
  • Biogeochemical Cycling
  • Rainfall

Coastal Region

  • Rivers
  • Tidal Flats
  • Nearshore

Ocean/Atmosphere

  • Climate Change
  • Ocean Circulation
  • Atmospheric Rolls
  • Hurricanes

Sensors

  • Microwave
  • Infrared
  • Laser
  • Hydrophone
  • Dissolved Gas

Waves

  • Wave Breaking
  • Internal Waves

Educational Opportunities

Graduate and undergraduate students who wish to study the intersection of atmospheric sciences, oceanography, and engineering at the Applied Physics Laboratory may work with AIRS advisors who have joint apointments in UW academic departments.  More >>

Graduate student Michael Schwendeman worked with advisor Jim Thomson to track and measure breaking waves in the North Pacific during an expedition to Ocean Station Papa. Mike's blog chronicled the research cruise.

What We Do

The Air-Sea Interaction and Remote Sensing (AIRS) Department is a diverse group of scientists, engineers, technical support staff, and students that conducts research focused on the air-sea interface by using a wide variety of remote sensing techniques.

Our interests range from the global scale of climate change and ocean circulation to the smallest scales of the physics of air-sea heat and gas exchange.

Our remote sensing tools also span a wide range of scales—from satellite remote sensing, to field experiments using surface and airborne platforms, and to laboratory experiments in wave tanks. Remote sensing instruments used include electro-optical sensors (microwave, infrared, and laser) and acoustic sensors (sonars and hydrophones).

Department Chair
Air-Sea Interaction and
Remote Sensing


Sharks as Oceanographic Research Platforms

Shark swimming paths and feeding behaviors are giving Peter Gaube and his colleagues some new insights to the annual phytoplankton bloom cycle in the North Atlantic.  More >>


SWIFT Tests in Arctic Waters

Graduate student researcher Seth Zippel tests SWIFT (Surface Wave Instrument Float with Tracking) performance in the Arctic in advance of planned missions to be conducted in summer 2014 during the Marginal Ice Zone experiments.  More >>


DARLA

Depth, or bathymetry, is a key variable to understand how to navigate safely in a shallow water environment and it is also key to predicting the currents and waves. DARLA will help determine the extent to which data assimilation models, that are initialized and constrained with remote sensing and in situ measurements, can infer bathymetry.  More >>

Marginal Ice Zone Program

An integrated program of observations and numerical simulations will focus on understanding ice–ocean–atmosphere dynamics in and around the MIZ, with particular emphasis on quantifying changes associated with decreasing ice cover. The MIZ measurement program will employ a novel mix of autonomous technologies (ice-based instrumentation, floats, drifters, and gliders) to characterize the processes that govern Beaufort Sea MIZ evolution from initial breakup and MIZ formation though the course of the summertime sea ice retreat.  More >>


Sea State and Boundary Layer Physics of the Emerging Arctic Ocean

This ONR Departmental Research Initiative is in response to the observed decline in Arctic sea ice extent. The U.S. Navy has a renewed interest in understanding and predicting the environment in this region, including a desire to forecast the presence or absence of sea ice at a variety of lead times.  More >>

Turbulence Generated by Tides in the Canal de Chacao, Chile

At a proposed tidal energy conversion site in southern Chile, APL-UW researchers measured the magnitude and scales of turbulence — to aid the design of turbines for the site and to understand the fundamental dynamics of flows through the channel.  More >>

In the News

The balance of ice, waves, and winds in the Arctic autumn

EOS Earth & Space Science News,

23 Jan 2017

Although summer sea ice loss in the Arctic is well studied, less is known about how ice comes back in autumn. A new program, Sea State and Boundary Layer Physics in the Emerging Arctic Ocean, is changing that.

Britain's weather is going to get even worse due to slow down of Gulf Stream

The Sun (UK),

5 Oct 2016

The famously awful weather in Great Britain is set to get even worse as the ocean current that keeps our climate mild begins to slow down. That’s the warning from a piece of research into a mysterious process that is causing the Gulf Stream to decelerate.

Atlantic Ocean’s slowdown tied to changes in the Southern Hemisphere

UW News and Information,

5 Oct 2016

The ocean circulation that is responsible for England’s mild climate appears to be slowing down. The shift is not sudden or dramatic, as in the 2004 sci-fi movie “The Day After Tomorrow,” but it is a real effect that has consequences for the climates of eastern North America and Western Europe.

Recent Papers

Ardhuin, F., J. Stopa, B. Chapron, F. Collard, M. Smith, J. Thomson, M. Doble, B. Blomquist, O. Persson, C.O. Collins III, and P. Wadhams, "Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data," Remote Sens. Environ., 189, 211-222, doi:10.1016/j.rse.2016.11.024, 2017.

1 Feb 2017, Link

Shi, F., C.C. Chickadel, T.-J. Hsu, J.T. Kirby, G. Farquharson, and G. Ma, "High-resolution non-hydrostatic modeling of frontal features in the mouth of the Columbia River," Estuaries Coasts, 40, 296-309, doi:10.1007/s12237-016-0132-y, 2017.

1 Jan 2017, Link

Collins, C.O., B. Blomquist, O. Persson, B. Lund, W.E. Rogers, J. Thomson, D. Wang, M. Smith, M. Doble, P. Wadhams, A. Kohout, C. Fairall, and H.C. Graber, "Doppler correction of wave frequency-spectra measured by underway vessels," J. Atmos. Ocean. Technol., EOR, doi:10.1175/JTECH-D-16-0138.1, 2016.

15 Dec 2016, Link

Close